Telegram Group & Telegram Channel
Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета

▪️ Сложная модель на маленьком, но качественном датасете:
— Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах.
— Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.

▪️ Простая модель на большом, шумном датасете:
— Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия.
— Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.

▪️ Подводные камни и крайние случаи:
— Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.

— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.

— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/912
Create:
Last Update:

Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета

▪️ Сложная модель на маленьком, но качественном датасете:
— Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах.
— Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.

▪️ Простая модель на большом, шумном датасете:
— Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия.
— Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.

▪️ Подводные камни и крайние случаи:
— Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.

— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.

— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/912

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA